Initiation of mineralization in bioprosthetic heart valves: studies of alkaline phosphatase activity and its inhibition by AlCl3 or FeCl3 preincubations.

نویسندگان

  • R J Levy
  • F J Schoen
  • W B Flowers
  • S T Staelin
چکیده

The principal cause of the clinical failure of bioprosthetic heart valves fabricated from glutaraldehyde-pretreated porcine aortic valves is calcification. Other prostheses composed of tissue-derived and polymeric biomaterials also are complicated by deposition of mineral. We have previously demonstrated that: (a) Failure due to calcification of clinical bioprosthetic valves can be simulated by either a large animal circulatory model or subdermal implants in rodents. (b) Calcification of bioprosthetic tissue has complex host, implant, and mechanical determinants. (c) The initial calcification event in the rat subdermal model is the mineral deposition in devitalized cells intrinsic to the bioprosthetic tissue within 48 to 72 h, followed later by collagen mineralization. (d) Initiation of bioprosthetic tissue mineralization, like that of physiological bone formation, has "matrix vesicles" as early nucleation sites. (e) Alkaline phosphatase (AP), an enzyme also associated with matrix vesicles involved in bone mineral nucleation, is present in both fresh and fixed bioprosthetic tissue at sites of initial mineralization. (f) Certain inhibitors of bioprosthetic tissue calcification (e.g., Al3+, Fe3+) are localized to the sites at which alkaline phosphatase is present. On the basis of these results, we hypothesize that alkaline phosphatase is a key element in the pathogenesis of mineralization of bioprosthetic tissue. In the present studies, we focused on the relationship of AP to early events in calcification, and the inhibition of both calcification and AP activity by FeCl3 and AlCl3 preincubations. Subdermal implants of glutaraldehyde pretreated bovine pericardium (GPBP) were done in 3-week-old rats. AP was characterized by enzymatic hydrolysis of paranitrophenyl phosphate (pnpp), and by histochemical studies. Calcification was evaluated chemically (by atomic adsorption spectroscopy) and morphologically (by light microscopy). The results of these studies are as follows: (a) Extractable AP activity is present in fresh but not glutaraldehyde-pretreated bovine pericardial tissue. However, histochemical studies reveal active AP within the intrinsic devitalized cells of GPBP, despite extended glutaraldehyde incubation. (b) Extrinsic AP is rapidly adsorbed following implantation, with peak activity at 72 h (424 +/- 67.2 nm pnpp/mg protein/min enzyme activity [units]), but markedly lesser amounts at 21 days (96.8 +/- 3.9 units). (c) Simultaneously to the AP activity maximum, bulk calcification is initiated, with GPBP calcium levels rising from 1.2 +/- 0.1 (unimplanted) to 2.4 +/- 0.2 micrograms/mg at 72 h, to 55.6 +/- 3.1 micrograms/mg at 21 days, despite a marked decline in AP activity at this later time.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkaline phosphatase activity of glutaraldehyde-treated bovine pericardium used in bioprosthetic cardiac valves.

Bioprosthetic valves fail frequently because of pathological mineralization, a process that begins in cell remnants of the glutaraldehyde (GLUT) fixed tissue. Other pathological cardiovascular calcification and physiological mineralization in skeletal/dental tissues are both largely initiated in cell-derived membranous structures (often called "matrix vesicles"), and the enzyme alkaline phospha...

متن کامل

Synergistic inhibition of calcification of porcine aortic root with preincubation in FeCl3 and alpha-amino oleic acid in a rat subdermal model.

Postimplant calcific degeneration is a frequent cause of clinical failure of glutaraldehyde crosslinked porcine aortic valve bioprostheses. We demonstrated previously in rat subdermal and circulatory implants that alpha-amino oleic acid used as a bioprosthesis pretreatment was highly effective in mitigating aortic valve cusp but not aortic wall calcification. In this study we investigated the f...

متن کامل

Effects of metallic ions and diphosphonates on inhibition of pericardial bioprosthetic tissue calcification and associated alkaline phosphatase activity.

This study focused on the association of extrinsic alkaline phosphatase (AP) activity with both early and advanced calcification of glutaraldehyde-pretreated bovine pericardial bioprosthetic (GPBP) tissue, and the inhibition of both calcification and AP activity by pre-incubation in diphosphonates (sodium-ethanehydroxydiphosphonate [NaEHDP], aminopropanehydroxydiphosphonate [APD]) and metallic ...

متن کامل

Inhibition of calcification of glutaraldehyde pretreated porcine aortic valve cusps with sodium dodecyl sulfate: preincubation and controlled release studies.

Calcification of bioprosthetic heart valves fabricated from glutaraldehyde pretreated bovine pericardium or porcine aortic valves (PAV) is a frequent cause of the failure of these devices. Of all strategies considered thus far, only detergent preincubations using compounds such as sodium dodecyl sulfate (SDS) inhibited PAV bioprosthetic mineralization in circulatory sheep bioprosthetic valve re...

متن کامل

Biphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose‑Induced Oxidative Stress

Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical materials research

دوره 25 8  شماره 

صفحات  -

تاریخ انتشار 1991